nedjelja, 22. travnja 2012.

Report on the symposium on Modern Human Genetic Variation

The following text is taken from the http://dienekes.blogspot.com/

Joshua Akey summarizes the talks of a recent symposium at the Swedish Royal Academy of Sciences. Two bits of information stand out from his report. 

The first:
In another talk focused on demography, Mattias Jakobsson (Uppsala University, Sweden) presented novel data on the impact of the agricultural revolution on the genetics of contemporary European populations. Specifically, Jakobsson and colleagues obtained nearly 250 Mb of sequence from three 5,000-year-old remains of Neolithic hunter-gatherers and one Neolithic farmer excavated in Scandinavia. Analysis of these sequences in the context of the present day European gene pool suggests that the spread of agriculture involved the northward migrations of farmers. Thus, these data provide the most direct and compelling support for the demic diffusion model of agriculture (as opposed to cultural diffusion) described to date.

It seems I have my answer to the what's next question. Jakobsson has been doing some interesting work on the demography of human emergence and dispersal, so it will be interesting to see not only the novel sequences from these Neolithic Scandinavians, but also how they fit into existing models of demic diffusion.

The second bit of information:

Similarly, Jeff Wall (University of California San Francisco, USA) described a novel method for inferring archaic admixture, which he applied to publicly available whole-genome sequence data generated by Complete Genomics. Provocatively, he finds higher rates of introgression in Asians compared to Europeans. An advantage of Wall’s method is that it does not require an archaic genome to infer introgression, and thus he was able to also test the hypothesis that contemporary African genomes have signatures of gene flow with archaic human ancestors. Strikingly, Wall indeed did find evidence of archaic admixture in African genomes, suggesting that modest amounts of gene flow were widespread throughout time and space during the evolution of anatomically modern humans.

I guess that I shouldn't throw explanation #1 out the window yet. Wall was involved in the recent paper on archaic African admixture, which only looked at a small subset of the genome, so it is nice to see that he is now working with full genomes, and that the race to data mine complete genomes for archaic admixture is afoot.

The book of abstracts is online at the symposium site. The Jakobsson paper does seem to agree with our emerging picture of a non-local origin of northern European farmers as well as greater survival of pre-farming populations in the northern periphery of Europe, but it will be interesting to see where exactly extant populations fall on the farmer-hunter/gatherer continuum.

Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Northern Europe
Mattias Jakobsson
Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Sweden

The prehistoric spread of farming in Europe has garnered intense interest for almost a century, and was one of the first questions to which population genetic data was used to investigate demographic hypotheses. However, the impact of the agricultural revolution on the European gene pool remains largely unknown. We obtained 249 million base pairs of quality-filtered human autosomal sequence data from some 5,000 year-old remains of three Neolithic hunter-gatherers and one Neolithic farmer excavated in Scandinavia, the northernmost fringe of agricultural practice at the time. Applying novel methods to study population structure based on low genome-coverage data, we find that Northern European Neolithic farmers are most similar to modern-day southern Europeans, contrasting sharply to Neolithic hunter-gatherers who are most similar to extant individuals from northern Europe. With most extant European populations appearing genetically intermediate between the two Neolithic groups, our results suggest that migration from the south by a genetically distinct group of humans accompanied the spread of agriculture to geographic regions where hunting and gathering was the mode of subsistence, but that admixture eventually shaped modern-day patterns of genomic variation.

Archaic admixture in the human genome
Jeff D Wall
Department of Epidemiology & Biostatistics, University of California, San Francisco, USA

We describe a method that uses patterns of linkage disequilibrium in extant human populations to identify regions of the genome that were inherited from ‘archaic’ human ancestors, such as Neandertals, Homo erectus or H. floresiensis. We validate this approach using two recently published archaic human genomes, and show that several ancient admixture events must have occurred, both within and outside of Africa. We also explore differences in the amount of archaic admixture across different contemporary human populations.


Finally, here is the meeting report:

Investigative Genetics 2012, 3:7 doi:10.1186/2041-2223-3-7

Understanding human evolutionary history: a meeting report of the Swedish Royal Academy of Sciences symposium of modern human genetic variation

Joshua M Akey

Nema komentara:

Objavi komentar